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On the basis of the classical tree statistics, being combined with the lattice theory of a polymer solution, we
prove that within the mean-field approximation thermoreversible gelation of polyfunctional molecules is a third
order phase transition analogous to the Bose-Einstein condensation of ideal Bose gases. The derivative of the
osmotic compressibility with respect to the concentration of primary functional molecules is shown to reveal a
discontinuity at the sol/gel transition point, whose width is directly related to the amplitude of the divergent
term in the weight-average molecular weight of clusters. An inclusion of cycle formation, as well as concen-
tration fluctuations, may, however, change the nature of the phase transition.
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I. INTRODUCTION

Recently, thermoreversible gelation in solutions of poly-
mers, as well as low molecular weight molecules, has been
attracting researchers’ interest �1,2�. Typical examples of the
phase diagrams with sol/gel transition lines have been re-
ported in the literature. These include atactic polystyrene in
various organic solvents �3,4�, poly�n-butylmethacrylate� in
2-propanol �5,6�, poly�vinyl chloride� in dimethyl malonate
�7�, etc. Many other examples can be found in the reviews
�1,2�. However, the thermodynamic nature of the transition
from a sol state to a gel state, and vice versa �sol/gel transi-
tion�, has not yet been clarified. Hence, there have been in-
tense argument and serious confusion on whether or not the
thermoreversible gelation is a real phase transition that is
accompanied by a singularity in the physical properties. One
group of researchers �8� insists that gelation is related only to
the connectivity properties of the system, and hence should
be a continuous change. Their argument is based on a simple
assumption such that gelation is a percolation, and since a
percolation is a geometric transition with no thermodynamic
singularity associated, sol/gel transition should not have any
singularity. Another extremity �9� insists that the transition
becomes a first order phase transition if the formation of
excessive large-scale cycles in the gel part is taken into con-
sideration. Therefore, it seems to be an urgent issue to re-
solve this problem.

In our previous study �10,11�, we showed that the transi-
tion is a third order phase transition analogous to the Bose-
Einstein condensation �referred to as BEC� of ideal Bose
gases. It is well known that an ideal Bose-Einstein gas real-
izes a characteristic state of order when approarching to the
absolute zero temperature �12�. The transition is accompa-
nied by a thermal discontinuity. At a finite temperature given
in terms of the number density of Bose molecules, the spe-
cific heat at a constant volume has a peak with discontinuous
slope. Below this transition temperature, a finite fraction of
all molecules goes into the lowest state with zero momen-
tum. The process is characterized as a gradual condensation
in momentum space from one phase with finite momentum

into the condensed phase with zero momentum, although
there is no phase separation in space. Our argument �10,11�
was based on the fact such that each connected cluster made
up of the primary molecules in the solution has a center of
mass translational degree of freedom �momentum� contribut-
ing to the entropy of mixing. Clusters of finite size �sol� have
finite momenta. At the gel point, the largest cluster grows to
a macroscopic network �gel�. Since the network spans the
entire solution, its center of mass ceases translational motion,
thus leading to a vanishing of the mixing entropy originating
in this cluster.

The gel point to be studied here is defined, in accordance
with the classical gelation theory �13–15�, by the point where
the weight-average molecular weight of the cluster becomes
infinite. In other words, it is defined by the percolation point
where a connected cluster grows to the macroscopic dimen-
sions to percolate over the entire solution. Such a definition
of the gel point on the basis of the connectivity of the system
is, in principle, different from the rheological gel point that is
defined by the point where the solution loses its fluidity. For
chemical gels with covalent cross links, these two definitions
give the same point, but we do not study chemical gels here
because they are thermodynamically irreversible. In what
follows we will focus on physical gels with cross links that
may break and recombine to reach thermal equilibrium. Al-
though solutions are percolated by the gel networks, they
may flow by repeating association-dissociation of the cross
links when external stress is given. Such fluidity of the sys-
tem does not affect the nature of the Bose-Einstein singular-
ity, although the amplitude of the singularity depends upon
the strength of the cross-link bonds described by the associa-
tion constant ��T� to be studied below.

In the previous study, we showed �10,11� that the second
order derivative of the mixing entropy �third order derivative
of the free energy� with respect to the temperature or con-
centration exhibits a discontinuity under the mean-field as-
sumptions such that �i� the free energy of clusters in the
solution is given by the Flory-Huggins theory of polymer
solutions, �ii� the clusters take Cayley tree forms, and �iii�
reactivity of the functional groups is not affected by the full
effect of self-avoidance on the lattice. The calculation for
proving this, however, involved complicate combinatorial
consideration since we treated multiple associations. There-*Electronic address: ftanaka@phys.polym.kyoto-u.ac.jp
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fore, the paper seemed to be difficult to access for the ma-
jority of researchers. In what follows, we attempt to draw the
same conclusion more clearly on the basis of a simpler pair-
wise cross linking, and stress the analogy between thermor-
eversible gelation and BEC. Since our proof of the parallel to
BEC is based on the above mean-field assumptions �i�–�iii�,
it may fail when any of these assumptions is eliminated.

II. THEORETICAL MODEL OF GELLING POLYMER
SOLUTIONS

We start from a model solution in which primary mol-
ecules of the molecular weight n �in terms of the number of
statistical units on them� carrying the number f of functional
groups are dissolved in a solvent �16�. For simplicity, we
assume that the functionality of the primary molecules is
monodisperse and the functional groups form pairwise bonds
that can break and recombine during thermal processes. We
employ a lattice theoretical description of the Flory-Huggins
type �17–19�, and incorporate the cluster formation by using
the conventional tree statistics of the gelation reaction
�13–15�. Our starting free energy is given by

��F = �
l�1

Nl ln �l + N0 ln�1 − �� + ���1 − ��	 + �
l�1

�lNl

+ 
���NG, �2.1�

where Nl is the number of clusters formed by l primary mol-
ecules �l-clusters�, �l their volume fraction, N0 the number of
solvent molecules, � the total volume fraction of the primary
molecules, 	 the total number of the lattice cells, � is Flory’s
� parameter, and �l����l

�− l�1
� �, the free energy change ac-

companying the formation of an l-cluster from the separate
primary molecules in their standard reference state �super-
script circle�. The last term is necessary only in the postgel
regime where a gel network formed by a macroscopic num-
ber NG of primary molecules exists. The free energy to bind
a molecule onto the gel is given by 
��������G−�1

� �. By
differentiation, we find for chemical potentials

���l = �l + 1 + ln �l − nl� + �nl�1 − ��2

+ nl
����
G�1 − �� , �2.2a�

���0 = 1 + ln�1 − �� − � + ��2 − 
����
G� , �2.2b�

for the l cluster and the solvent molecule, where

� � �
l�1


l + 1 − � �2.3�

gives the total number of molecules and clusters possessing
the translational degree of freedom. The summation


 � �
l�1


l �2.4�

gives the number density of finite clusters in the solution,
and 
G�NG /	 is the number density of polymer chains con-
tained in the gel network.

In thermal equilibrium, the solution has a distribution of
clusters with a population distribution fixed by the equilib-
rium condition

��l = l��1 �2.5�

for association and dissociation. Then, we find the volume
fraction of l clusters to be given by

�l = Kl�1
l, �2.6�

where �1 is the volume fraction of the unassociated
molecules, and the equilibrium constant is given by Kl
=exp�l−1−�l�.

III. APPLICATION OF THE CLASSICAL TREE
STATISTICS FOR GELATION

We now split the free energy into three parts �l=�l
comb

+�l
conf+�l

bond. To find the combinatorial part, all clusters are
assumed to take tree forms. The cycle formation within a
cluster is neglected. We consider the entropy change on com-
bining l identical f-functional molecules to form a single
Cayley tree. The classical tree statistics �14� gives �Sl

comb

=kB ln�f l�l�, where

�l �
�fl − l�!

l!�fl − 2l + 2�!
�3.1�

is Stockmayer’s combinatorial factor. The free energy is
given by �l

comb=−�Sl
comb/kB.

For the conformational free energy, we employ the lattice
theoretical entropy of disorientation �19�,

Sdis�n� = kB ln�n��� − 1�n−2

�en−1 � �3.2�

for a chain consisting of n statistical units, where � is the
lattice coordination number, and � the symmetry number of
the chain. We then find

�Sl
conf = Sdis�ln� − lSdis�n� = kB ln	���� − 1�2

�en
�l−1

l
 ,

�3.3�

with most probably �=1.
Finally, the free energy of bonding is given by

�l
bond = �l − 1���f0, �3.4�

because there are l−1 bonds in a tree of l molecules, where
�f0 is the free energy change on forming one bond.

Combining all results together, we find

Kl = fl�l� f�

n
�l−1

�3.5�

for the equilibrium constant, where

��T� � ���� − 1�2/�e�exp�− ��f0� �3.6�

is the association constant.
We first consider the pregel regime where all clusters are

finite. The total volume fraction and the total number of clus-
ters in the solution are then given by using Eq. �2.6� as

��/n = �
l=1

�

l�lx
l, �3.7a�
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�
 = �
l=1

�

�lx
l. �3.7b�

Here, the parameter x is defined by x���1 /n ��1 being the
volume fraction of primary molecules that remain unassoci-
ated in the solution�. The osmotic pressure � of the solution
is given by the chemical potential of the solvent through the
thermodynamic relation �a3=−��0. Explicitly, we have

�a3/kBT = 
 − � − ln�1 − �� − ��2 �3.8�

in the pregel regime. It is basically proportional to the total
number 
 of clusters since all molecules with a translational
degree of freedom equally contribute to the pressure within
the ideal gas approximation. By solving Eq. �3.7a� with re-
spect to x, and substituting the result into Eq. �3.8�, we obtain
the osmotic pressure as a function of the temperature and
volume fraction of the primary molecules.

IV. SIMILARITY TO BOSE-EINSTEIN CONDENSATION

At this stage, we readily realize that our equations are
mathematically parallel to those we encounter in the study of
BEC of ideal Bose gases �12,20�. The number density N /V
and the pressure p of an ideal Bose gas consisting of N
molecules confined in the volume V is given by

�T
3N/V = �

l=1

�

xl/l3/2, �4.1a�

p�T
3/kBT = �

l=1

�

xl/l5/2, �4.1b�

where x is the activity of the molecule, and �T
�h / �2�mkBT�1/2 the thermal de Broglie wavelength. The
coefficient of the infinite series on the right-hand side is re-
placed from Stockmayer’s combinatorial factor �l to 1 / l5/2,
but other parts are completely analogous. The infinite sum-
mations on the right-hand side of these equations are known
as Truesdell’s function �21� of order 3

2 and 5
2 . Their singu-

larity appearing at the convergence radius x=1 was studied
in detail �21�. Since the internal energy of the Bose gas is
related to the pressure as U=3pV /2, the singularity in the
compressibility and that in the specific heat has the same
nature and reveal discontinuity in their derivatives �12�.
Hence the transition �condensation of macroscopic number
of molecules into a single quantum state� turns out to be a
third order phase transition �12,20,22�.

We now show that a similar picture holds for our gelling
solution; a finite fraction of the total number of primary mol-
ecules condenses into a single state �gel network� with no
center of mass translational degree of freedom �no momen-
tum�, although we have no quantum effect. We first calculate
the �dimensionless� osmotic pressure defined by KT
��kBT /a3���� /���T /� as a function of the temperature and
the volume fraction. By taking the concentration derivative
of Eq. �3.8�, we find KT

−1=�2��� ,T�, where

���,T� � ���,T�/n� + 1/�1 − �� − 2� . �4.2�

Here, a new function � is defined by ��n��
 /���T. This
result was previously derived in the case of multiple cross
links �10�. The singularity in the osmotic pressure originates
in this � function: the translational entropy of clusters. From
the fundamental two relations �3.7a� and �3.7b� given above,
the function � is given by

� = � l�lx
l �� l2�lx

l = 1/l̄w �4.3�

in terms of the weight-average aggregation number l̄w of
clusters. In what follows, we show that � is continuous
across the gel point concentration, but its derivative
��� /���T reveals a discontinuity.

To simplify theoretical analysis, let us introduce the kth
moment of Stockmayer’s distribution by

Sk�x� � �
l=1

�

lk�lx
l �k = 0,1,2, . . . � . �4.4�

Then, the number- and weight-average cluster sizes are given
by

l̄n = S1�x�/S0�x� , �4.5a�

l̄w = S2�x�/S1�x� . �4.5b�

All moments are monotonically increasing functions of x and
have a common radius of convergence

x = x* � �f − 2� f−2/�f − 1� f−1. �4.6�

For x�x* all moments diverge. Exactly on the radius of
convergence x*, S0 and S1 take finite values, but all moments
with k�2 are infinite. Since the weight-average cluster size
becomes infinite at this point, x=x* gives the gel point. The
volume fraction at the gel point is therefore given by
��* /n=S1�x*�= �f −1� / f�f −2�2. With further increase in the
volume fraction of primary molecules, the excess molecules
in the part �−�* condense into the macroscopic cluster �in-
finitely extended branched network� through a cascade pro-
cess, and will not contribute to the number density, so that it
will remain a constant value �
*=2�f −1� / �f −2�. The
weight-average cluster size also remains infinite. We have,
therefore, a kind of condensation phenomenon in momentum
space.

The analogy of BEC can be seen more clearly if we re-
place Stockmayer’s combinatorial factor �l by its asymptotic
form �l�x*−1 / l5/2 for large l. This form is derived by apply-
ing Stirling’s formula to Eq. �3.1�. We find

��/n = �
l=1

�
1

l3/2� x

x*�l

, �4.7a�

�
 = �
l=1

�
1

l5/2� x

x*�l

. �4.7b�

Thus, we can see that the singularity at x=x* is perfectly
identical to those in Truesdell’s functions at x=1. In our
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previous study �10�, we referred to this important similarity
in the case of multiple association.

A simple calculation gives

l̄w � A/��* − �� �4.8�

with a constant amplitude

A � fn/�f − 2�3��T� �4.9�

for ���*, and l̄w=� for ���*. We thus find the disconti-
nuity in the slope of the function � is given by ���� /���T

=1/A. This leads to a discontinuity in the osmotic compress-
ibility of the form

�� �KT

��
�

T
= − KT

2��*

n
��� ��

��
�

T
= − B/���*,T�2,

�4.10�

where

B � f2�f − 2�9��T�4/�f − 1�3n5 �4.11�

is a constant depending only on the temperature, functional-
ity, and the number of statistical units on a chain. For large
molecular weight polymers, the amplitude B is small. This is
the main reason why an experimental detection of the singu-
larity has so far been difficult. However, there is a good
chance for the observation to be feasible. Quite often, the
sol/gel transition line crosses the phase separation line �bin-
odal and spinodal� at the top, or on the shoulder, of the phase
separation region. Such a crossing point is called either a
tricritical point or critical endpoint depending upon the rela-
tive position of the transition curves. As we approach the
spinodal point �by changing the temperature under a fixed
concentration, for instance� where the condition ���* ,T�
=0 is satisfied, the discontinuity is enhanced by critical fluc-
tuations as seen from Eq. �4.10�, and there may be a chance
to observe the singularity.

V. BOSE-EINSTEIN CONDENSATION IN CLASSICAL
STATISTICAL MECHANICS

There are several other condensation phenomena in clas-
sical statistical mechanics that are similar to BEC. Jacobson
and Stockmayer �23�, for example, pointed out that, for lin-
ear polycondensation systems with chains and rings, it is
possible to obtain 100% yield of rings beyond a certain criti-
cal dilution by driving the polycondensation to completion.
The origin of this singularity comes from the entropy of
rings. They showed that, within Gaussian chain statistics, the
population of rings of size l is proportional to xl / l5/2, where x
is the molar concentration of the primary molecules that re-
main unassociated in the solution. Similar singularity, and
occurrence of a phase transition, was reported in the study of
the melting of nucleic acids �24�. In the melting of duplex
DNA, the entropy of loops formed by the complementary
chains due to partial dissociation of the hydrogen bonds
gives rise to a singularity. The nature of the phase transition
depends upon the index c characterizing the loop entropy in
the form 1/ lc for a large number of monomer units l. It was

pointed out that the case c= 5
2 turns out to be analogous to

BEC. The Stockmayer factor in the combinatorial tree statis-
tics falls also on this category. The effect of cycle formation
in the sol, as well as in the gel, beyond the level of tree
statistics, is however important. It is well known that the gel
point shifts to a higher conversion, and modifies the critical

index of divergence in l̄w. It may also modify the nature of
the phase transition as was discussed in Ref. �9�, although
their argument was not plausible. �In the case of the first
order transition, there should be a finite concentration gap
between the sol phase and gel phase, called “chimney,” on
the temperature-concentration phase plane that comes out of
the macroscopic phase separation region, but this has never
been observed.� What we presented here is a proof for the
existence of a third order singularity in thermoreversible gels
within the conventional mean-field description of gelation.

VI. TREATMENT OF THE POSTGEL REGIME

The theoretical argument given here is based on Stock-
mayer’s picture �14� for treating the gelling reaction in the
regime after passing the gel point. Theoretically, this is not
the only consistent way to treat the postgel regime. There are
other ways of treating it that fulfill the fundamental thermo-
dynamic laws �Gibbs-Duhem relation�. In fact, Flory had
proposed a different picture in his old work on a gelation
reaction of trifunctional molecules �13�. In his treatment,
molecules in the sol part react with those in the gel part with
an increase in the concentration, and as a result, formation of
cyclic linkages within the gel part is allowed. The weight-

average cluster size l̄w in the sol goes back to a finite de-
creasing function of the concentration because large clusters
in the sol part are connected into the gel network as reaction
proceeds. Upon adopting this treatment, we readily find

l̄w � A/�� − �*� �6.1�

near the gel concentration, and hence the discontinuity in the
slope of � is doubled as ���� /���T=2/A. The third order
nature of the phase transition remains the same as in Stock-
mayer’s picture, although the molecular mechanism of con-
densation and hence the amplitude of the discontinuity are
different. These two treatments do not contradict fundamen-
tal laws of thermodynamics, and both are equally acceptable.
Their comparison and application to phase diagrams were
detailed in our preceding paper �11�.

To study the postgel regime in more detail, let us intro-
duce a new parameter � through the positive root of the
equation

x � ��1 − �� f−2. �6.2�

Then, the first three moments of Stockmayer’s distribution
are explicitly calculated as �14�

S0�x� = ��1 − f�/2�/f�1 − ��2, �6.3a�

S1�x� = �/f�1 − ��2, �6.3b�

S2�x� = ��1 + ��/f�1 − �f − 1����1 − ��2. �6.3c�
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To see the physical meaning of �, let us calculate the
extent of the reaction, i.e., the probability for a randomly
chosen functional group to be associated. Since an l cluster
includes the total of fl groups, among which 2�l−1� are as-
sociated, it is given by 2�S1�x�−S0�x�� / fS1�x�=�. Thus, it
turns out that � introduced by the formal relation �6.2� actu-
ally gives the extent of reaction. By using �, the average
cluster sizes are given by

l̄n = 1/�1 − f�/2� , �6.4a�

l̄w = �1 + ��/�1 − �f − 1��� . �6.4b�

Since the weight-average diverges at �=�*�1/ �f −1�, the
extent of the reaction at the gel point is given by �*. This
value corresponds to the maximum of x=x* in Eq. �6.2�. At
low concentration with the extent of reaction smaller than the
critical value �*, Eq. �6.2� gives a unique value of � for a
given x. On passing the gel point, � becomes larger than �*,
so that Eq. �6.2� gives another root �� that lies below �*.
Flory �13� adopted this lower root as the extent of reaction in
the sol part, while � is regarded as that of the total solution.
In the present context of thermoreversible gelation, the first
equation �3.7a� remains valid in the form

��/n = S1��� �6.5�

since it gives the total volume fraction. The second one is
changed to

�
S = S0���� , �6.6�

because the number of clusters can be counted only for finite
clusters �25�. �Superscript S indicates the sol part.� The vol-
ume fraction of the sol part is similarly given by

��S/n = S1���� , �6.7�

leading to the sol fraction wS=S1���� /S1���. The function �
that appeared in the compressibility now includes the term
proportional to

n��
S/���T = 1/l̄w
S , �6.8�

where

l̄w
S ���� = �1 + ���/�1 − �f − 1���� �6.9�

refers to the weight-average cluster size in the sol part in the
postgel regime. Thus, we find a discontinuity in the slope of
the osmotic compressibility also in Flory’s treatment.

The difference in the above two treatments were later ex-
amined from a kinetic point of view. For an irreversible re-
action, Ziff and Stell �26� clarified the reaction mechanism
�sol-gel interaction� in the two treatments after the gel point
is passed. They found that in Stockmayer’s treatment reac-
tive groups in the sol do not interact with those in the gel,
and the gel grows through a cascade process of the sol into
the gel, while in Flory’s treatment all functional groups are
allowed to react. On the basis of such a kinetic study, they

proposed a third model which takes the reaction between sol
and gel network into account, while the cycle formation in
the gel is forbidden as in Stockmayer’s model. This third
treatment, however, turned out not to fulfill Gibbs-Duhem
relation when applied to thermoreversible gelation �11�.
Later, to ensure the equilibrium distribution, additional terms
describing reversible reaction �fragmentation� were intro-
duced to the kinetic equation by van Dongen and Ernst �27�.
Since their study was limited only to Flory’s and Stockmay-
er’s model, the possibility of another new treatment within
the classical tree statistics remains unexcluded. From the
mathematical analysis given in this paper, however, it is
highly probable that a new thermodynamically consistent
treatment, even if it exists, leads to the third order singularity
lying somewhere between Stockmayer’s one and Flory’s one.

VII. CONCLUSIONS AND DISCUSSION

We have shown that, within the mean-field treatment of
both gelation reaction and polymer solution, thermorevers-
ible gelation is a third order phase transition analogous to the
BEC. The gel network corresponds to a Bose condensate
with no translational motion �momentum� as a whole. There
is a frequent exchange of molecules between the gel network
�with no momentum� and the sol part �with finite momen-
tum�, but on thermal average a finite fraction �gel fraction
wG=1−wS� in the number of molecules loses their momenta
in the postgel regime.

The effect of fluctuations in cluster formation is important
near the transition point as it usually is in many phase tran-
sitions. It may change the nature of the transition. In the
present gelation problem, however, one has to consider it
from two sides. Firstly, the effect of cycle formation during
the gelation reaction beyond the classical tree statistics must
be considered. Secondly, concentration fluctuations in the
polymer solution must be considered beyond the mean-field
Flory-Huggins treatment. These two different aspects of fluc-
tuations should be studied from a unified theoretical point of
view without violating the fundamental law of thermody-
namics. This is an open problem. The critical exponent and
the nature of the singularity may be changed by these fluc-
tuation effects at extremely near the transition point. The
criterion for the mean-field prediction to be valid �Ginzburg
criterion� should also be found in order to characterize non-
classical singularity in the experimeriments. This problem
also lies beyond the scope of the present study.

As for the absolute value of the discontinuity in the slope
of the osmotic compressibility, closer experimental observa-
tion near the spinodal point with enhanced singularity by
critical fluctuations of phase separation is necessary since the
amplitude B is small for polymeric gels with n�1. �For a
trifunctional molecules with f =3, for example, we have B
=9�4 /8n5.� For this purpose, measurements near the tricriti-
cal point, the point where the sol/gel transition line �continu-
ous transition� crosses the binodal �discontinuous first order
transition� at the top of the miscibility gap, are suitable.
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